

MDRTB治療的大改變 和藥物毒性監測

李枝新醫師 台北市立萬芳醫院 結核病中心

全球結核病疫情現況

- 2020年,全球新發生990萬個結核病個案,造成約150萬人死亡,抗藥結核病(RR-TB/MDR-TB)佔約46.5萬人(2019)。
- 2020年,因為COVID-19疫情的影響,全球結核病的通報人數下降, 但是死亡率上升。

台灣結核病發生率持續改善

全國結核病發生率

台灣的結核病現況

Anti-TB Agents, Mechanisms of Action

Goldberg DE, Cell 2012

https://doi.org/10.1016/j.cell.2012.02.021

Bhat ZS, Biomedicine & Pharmacotherapy 2018

https://doi.org/10.1016/j.biopha.2018.04.176

MDR-TB (多重抗藥性結核病)

Active replicating

Dormant

Bactericidal Effect

Acquired Resistance

Sterilizing Activity

Disease Relapse

Failure

2021年本國籍結核病初痰抗藥性監測

備註:本國人初痰檢出MTBC抗藥比例。INH、RMP抗藥,不含MDR抗藥者。

MDR-TB治療成功率僅59%

Eur Respir J 2006; 28: 980-985 DOI: 10.1183/09031936.06.00125705 Copyright@ERS Journals Ltd 2006

Outcome of pulmonary multidrug-resistant tuberculosis: a 6-yr follow-up study

C-Y. Chiang*, D.A. Enarson*, M-C. Yu", K-J. Bai", R-M. Huang¹, C-J. Hsu¹, J. Suo¹ and T-P. Lin¹

ABSTRACT: A retrospective study was performed to determine factors associated with the outcome of pulmonary multidrug-resistant tuberculosis (MDR-TB) in Taipel, Taivan.

All patients newly diagnosed with pulmonary MDR-TB in a referral centre from 1992-1996 were

enrolled and their outcome over the subsequent 6 yrs was determined.

A total of 29 patients were identified, comprising 15 (7.19%) makes and 84 (28.1%) females with a mean age of 47.2 yrs. The patients received a mean of 3.7 effective drugs. Out of the 299 patients, 15 (31.5%) were cured, 3 (10.4%) failled, 26 (4.5%) died and 76 (23.1%) default of received in second-line drugs with offoxacin, 74 (59.2%) were cured. Those who received offoxacin had a lower risk of relapse than those receiving only first-line drugs (fazzar ratio (18f) 0.16, 95% confidence interval (CI) 0.03–0.31) and a lower risk of T8-related death than been receiving second-line drugs but not offoxacin (adjusted 4f) 8.0.5, 95% c 10.31–0.831).

In conclusion, multidrug-resistant tuberculosis patients who received ofloxacin were more likely to be curred, and were less likely to die, fall or relapse. The utility of new-generation diprorequinolones, such as mostificands, in the treatment of multidrug-resistant tuberculosis needs to be evaluated. Default from treatment is a major challenge in the treatment of multidrug-resistant tuberculosis.

KEYWORDS: Death, follow-up, multidrug resistant, relapse, tuberculosis

ultidrug-resistant tuberculosis (MDR-TB), which is defined as a disease with solates resistant to at least isoniazid and rifampin, compromises response to anti-TB treatment [1-3]. MDR-TB is prevalent in a number of countries [4].

Recommended treatment of MDR-TB includes the use of second-line anti-TB drugs [5]. To date, there have been no randomised controlled trials to evaluate the treatment of MDR-TB. Treatment regimens are determined individually for each patient, laking into account the results of susceptbility testing [6-12], or are standardised regiments [13-15] depending on the local situation.

The masagement of MDR-TB in Tajeci, northern Taivan, has been highly specialised in a referral centre, the Chronic Disease Control Bureau (CDCB), which was the headquarters of a TB control system functioning for 3-40 yrs (until 2007), with a relevoive of public bestim turnes sible for TB services [16]. The majority of MDRth patients identified in general bospitals were referred to the CDCB for further management. Treatment of MDR-TB has Increasingly included

VOLUME 28 NUMBER 5

the use of ofloxacin in the second-line treatment regimen [17]. To understand the long-term outcome of MDR-TB, a consecutive series of MDR-TB cases were reviewed and followed up over time, with specific attention paid to the results of the use of ofloxacin for treatment. The results of this follow-up study are reported here.

METHODS

Patients with MDR-TB were identified from the Wyooksteriology. Laboratory of the CDCB (Taipet, Taiwan). Patients who were newly diagnosed with pulmonary MDR-TB from 1992-duploments of the patients of the control of the patients of the pat

e treatment of multidrug-Fax 33 886225771501 E-mil domanon@inuald.org Received: October 27 2005 Accepted after revisitor.

SUPPORT STATEMENT
C-Y. Chiang and D.A. Emarsen
proposed the original idea and
designed the study, C-Y. Chiang, M.
C-Ya, K-J. Ball, RM Haung, C-J.
Has, J. Sto, and T-P. Lin cellected
information and followed up patients.
C-Y. Chiang and D.A. Emarsen
analysed and interpreted the data. All
authors were insuled in dusting the
manuscript and gave fitsal approval of
the manuscript and gave fitsal approval of

f European Respiratory Journ f Print ISSN 0903-1936 Online ISSN 1399-3003

EUROPEAN RESPIRATORY JOURNA

nicipal Wan Fang Hospital, Taipa

lainan, Taiwan, and

New and relapse TB cases

Chiang CY, 2006 ERJ

台灣MDR-TB治療成功率51.2%,引進新藥處方,成功率僅提高到59.2%

失落率達29.1%,應改善管理模式

抗藥性結核病防治的困境

Physical, mental, economical distress

WHO, 2021, Global TB Report

Adverse Events

Hearing loss
Permanent numbness
Required regimen adjustment
Lead to admission or death

Ageing and Comorbidities

Comorbidities 69.3%, DM 27.2%, Cancer 6.7%

Social Stigma

Novel Regimen with Shorter Treatment Course

Treatment of Highly Drug-Resistant Pulmonary TB

NIX-TB, AN OPEN-LABEL, SINGLE-GROUP STUDY

109 Patients

with confirmed tuberculosis

Clinical resolution at 6 mo after therapy

Three-drug regimen (26 wk)

Pretomanid (recently approved)

Linezolid

XDR tuberculosis

Miracle Drug

BEDAQUILINE

MDR-TB

N=71 (65%)

Nonresponsive or treatment-intolerant

MDR tuberculosis

N=38 (34%)

90% of all patients had favorable outcomes 95% CI, 83–95

89%

95% CI, 79-95

92%

95% CI, 79-98

以病人為中心

- 1. 進階都治無縫銜接住院與社區(觀察→關懷)
- 2. 視訊都治 (避免傳染病污名化壓力)
- 3. 主動藥物安全監測 (藥物安全)
- 4. 藥物血中濃度監測 (個人化劑量調整)
- 5. 全面快速分子藥敏檢測 (即時的個人化處方)

多重抗藥結核病防治策略及患者管理 Taiwan MDR-TB Treatment Consortium (TMTC)

跨領域的全人關懷

衛教

生理評估

心理評估

家庭及社經 支持評估

跨領域團隊合作

85歲女性,庫欣式症候群 多重抗藥結核骨髓炎 與整型外科團隊合作

48歲男性,糖尿病肺部大面積開洞病灶 與胸腔外科團隊合作

72歲男性,冠心症+心衰竭,抗藥 結核腰椎感染,下肢無力臥床,小 便滯留,與<mark>心臟科、骨科及復健</mark>團 隊合作

家戶接觸者評估及衛教

55歲男性,糖尿病,於團隊診治抗藥結核病,案長女經<mark>接觸者評估</mark>後診斷為抗藥結核病 案妻及案次女為抗藥結核潛伏結核感染,均由團隊治療,並緩和父母對傳播給家人的負罪感

無縫銜接住院與社區全人照護

Outreach the patient-centered care to the community Timely response for adverse event management

Attending physicians

Nursing specialists

DOT supporters

Patients

Social

Network

Software

有路,咱沿路唱歌;無路,咱蹽溪過嶺

DOTS-Plus, Much More Than Just DOTS

Anywhere: either rural or urban, even far in the mountains

Omnipotent: wound care, injection, adverse events monitoring ...

Nonstop: throughout the course of treatment

Emergency Allowance

有溫度的都治關懷服務

THEORICAL UNIVERSITY OF THE PROPERTY OF THE PR

Directly Observed Treatment, DOT

DOT Station

At Home

 \rightarrow

Protect Privacy

Remote DOT

Improve convenience

遠端視訊都治

Education and preparation

Free cell phones and data plans

User-friendly

All-in-one package

International video DOT

Lower drop-out rate by video-DOT

不良反應的風險管控

治療不良反應是病人退出治療或治療失敗的最重要因素

Active surveillance for adverse events in patients on longer treatment regimens for multidrug-resistant tuberculosis in Viet Nam

Nguyen Bao Ngoc₀^{1,2,3}, Hoa Vu Dinh₀^{3*}, Nguyen Thi Thuy^{1,2}, Duong Van Quang³, Cao Thi Thu Huyen³, Nguyen Mai Hoa³, Nguyen Hoang Anh₀³, Phan Thuong Dat¹, Nguyen Binh Hoa¹, Edine Tiemersma⁴, Nguyen Viet Nhung¹

Vietnam: 659 (Age 41) MDR-TB

71% AE, 17.5% SAE

Ngoc NB. 2021 PLoS ONE 16(9): e0255357

Drug-associated adverse events in the treatment of multidrug-resistant tuberculosis: an individual patient data meta-analysis

Zhiyi Lan, Nafees Ahmad, Parvaneh Baghaei, Linda Barkane, Andrea Benedetti, Sarah K Brode, James C M Brust, Jonathon R Campbell, Vicky Wai Lai Chang, Dennis Falzon, Lorenzo Guglielmetti, Petros Isaakidis, Russell R Kempker, Maia Kipiani, Liga Kuksa, Christoph Lange, Rafael Laniado-Laborín, Payam Nahid, Denise Rodrigues, Rupak Singla, Zarir F Udwadia, Dick Menzies, and The Collaborative Group for the Meta-Analysis of Individual Patient Data in MDR-TB treatment 2017*

Global: 9178 MDR-TB, (Age 37)

Permanent interruption: Lev 1.3%, Mox

2.9%, Bedaq 1.7%, Clofaz 1.6%

Amk 10.2%, Kana 7.5%, Capre 8.2% PAS 11.6%, Linezolid 14.1%

Lan Z. 2020 Lancet Resp Med

Putting in harm to cure: Drug related adverse events do not affect outcome of patients receiving treatment for multidrug-resistant Tuberculosis. Experience from a tertiary hospital in Italy

Gina Gualano o¹, Paola Mencarini o¹*, Maria Musso¹, Silvia Mosti¹, Laura Santangelo², Silvia Murachelli², Angela Cannas³, Antonino Di Caro³, Assunta Navarra⁴, Delia Goletti⁵, Enrico Girardi⁴, Fabrizio Palmieri¹

Italy: 74 MDR-TB (Age 32)

84% AE, 15.4% SAE

Gualano G. 2019 PLoS ONE 14(2): e0212948

Adverse Events Associated with Treatment of Multidrug-Resistant Tuberculosis in China: An Ambispective Cohort Study

China: 751 MDR-TB (Age 44) **90.7%** AE, 55.2% Regimen adjustment,

6.8% Discontinuation of offending

drug

Chang Y. 2017 Medical Science Monitor

Minimizing Nephrotoxicity of Aminoglycosides

Accumulation in Proximal Tubular Cells

Megalin mediated endocytosis

Megalin mediated, saturable endocytosis
Christensen et al. 2002 Nature review: molecular cell biology
Nature Reviews | Molecular Cell Biology

Risk factors for nephrotoxicity of aminoglycosides

逐步延長二線針劑投藥間距

THEORICAL UNITED BY

減低毒性卻不影響藥物療效

Initial daily administration of AMG ensures maximal bactericidal efficacy → 78.4% SCC within 2 months, without acquired drug resistance

Tubular necrosis due to Megalin-mediated endocytosis in renal proximal tubular cells (Saturable)

Extend dosing intervals after SCC →
Longer duration to eliminate ↓Nephrotoxicity
Tolerate higher accumulative dose

Stepwise De-escalation of Dosing Interval for aminoglycosides

- Aminoglycosides (AMG) are inexpensive and highly potent for treating multidrug-resistant tuberculosis (MDR-TB).
- Stepwise de-escalation of AMG dosing intervals was implemented to minimize the nephrotoxicity

Dosing Interval De-escalation Protocol

- Once daily during admission
- 5 times weekly after discharge
- Thrice weekly after documented sputum culture conversion (SCC) for a further 2 months and later
- Twice weekly for a minimum of 6 months after SCC

投藥間距最佳化成效

- 185名MDR-TB病人,24(13%)發生腎毒性,其中21(87.5%) 完全恢復。
- 89%完成治療,兩個月痰培養陰轉率達78.4%。
- 延長給藥間距可以增加累積劑量耐受力。

林賢君/余明治 Clin Microb Inf 2022

主動藥物安全

106-108 年疾病管制署委託科技研究計畫: (江振源醫師)

Hepatotoxicity, Nephrotoxicity, Hypothyroidism, QTc prolongation, Ototoxicity Bone marrow suppression, Peripheral neuropathy, Optic neuropathy, Mood disorder

- 核心 (Core package):
 - All serious adverse events, SAE
- 進階 (Intermediate package):
 - All SAE
 - AE of special interest
- 高階 (Advanced package):
 - All AE of clinical significance

Clinical Features of Hypothyroidism

- A 40-year-old woman developed fatigue, weight gain, constipation, dry skin, myalgia, dyspnea, and menstrual irregularities during the MDR-TB treatment
- Pericardial effusion, pleural effusion

Adverse Events in MDR-TB Treatment

ADVERSE EVENT	N (%)	ADVERSE EVENT	N (%)
Nausea/vomiting	268 (32.8)	Depression	51 (6.2)
Diarrhea	173 (21.1)	Tinnitus	42 (5.1)
Arthralgia	134 (16.4)	Allergic reaction	42 (5.1)
Dizziness/vertigo	117 (14.3)	Rash	38 (4.6)
Hearing disturbances	98 (12.0)	Visual disturbances	36 (4.4)
Electrolyte disturbances	94 (11.5)	Hypothyroidism	29 (3.5)
Abdominal pain	88 (10.8)	Psychosis	28 (3.4)
Anorexia	75 (9.2)	Hepatitis	18 (2.2)
Peripheral neuropathy	65 (7.9)	Nephrotoxicity	9 (1.1)

A case report of ethionamide associated acquired-hypothyroidism

Hypothyroidism in MDR-TB Treatment

Series	N	%
Lesotho, 2012	186	69%
S. Africa, 2011	137	58%
Botswana, 2012	213	34%
India, 2016	188	23%
India, 2016	52	21%

個人化的劑量

Dose-Dependent Bactericidal Effect

- Moxifloxacin
 - AUC/MIC >100 (MIC 0.5 mcg/ml)
 Predicts bactericidal effect of log-phase growth during monotherapy
 - MSC₅₀=2 mcg/ml
 minimal conc. to kill 50% of bacteria in a stationary (slowly or infrequently growing) phase.
 - MDC₅₀=4 mcg/ml
 minimal conc. to kill 50% of bacteria in a dormant phase.

Conc.-dependent QT prolongation (Toxicity)

The Gap between Efficacy and Toxicity

- Shorter Course Needs Higher Dose
 - Conventional > 18-month regimen
 - Moxifloxacin 400 mg
 - Levofloxacin 750 mg
 - Linezolid 600 mg
 - Short-course > 9-month regimen
 - Moxifloxacin 800 mg
 - Nix-TB Trial 6-month BPAL regimen
 - Linezolid 1200 mg
 - NExT study > 6-month regimen
 - Levofloxacin 750-1000 mg

族群的平均值不代表個體的最佳值

- Only a few subjects were eligible for clinical trials.
- Patients with comorbidities, extreme BMI, advanced age, drug-drug interaction are usually not covered during the development of pharmacometrics data in phase I-III stages.

Levofloxacin Cmax in MDR-TB (Tanzania)

 $eC_{max} < 7.55 \mu g/ml$ $eC_{max} \ge 7.55 \mu g/ml$ P value

Wide variability in Cmax
Only 1/3 reached the target

Inadequate Cmax

- Later sputum conversion
- Acquired resistance

	n = 18	n = 15	
Time to Sputum Culture Conversion in days	47.8 ± 26.5	38.3 ± 22.7	0.27
Treatment outcome $\frac{a}{a}$			
Cured	6 (33.3)	10 (66.7)	0.06
Treatment completed	7 (38.9)	3 (20.0)	
Death	4 (22.2)	2 (13.3)	
Development of acquired drug resistance	1 (4.5)	0 (0)	
Favorable \underline{b}	13 (72.2)	13 (86.7)	0.31

Therapeutic Drug Monitoring (TDM)

- The clinical laboratory assay of a chemical parameter that, with appropriate medical interpretation, will directly influence drug prescribing procedures.
- Individualization of drug dosage by keeping plasma (blood) drug conc. within a targeted therapeutic range.
- TDM is certainly not suitable for every drug in every patient and every disease.

Kang JS, Korean J Int Med 2009. doi: 10.3904/kjim.2009.24.1.1 Buclin T, Front Phar 2020. doi:10.3389/fphar.2020.00177

Are TB Drugs Suitable Candidates to TDM?

- Significant between-subject PK variability
 - Absorption: moxifloxacin, linezolid
 - **Distribution**: clofazimine, bedaquiline, moxifloxacin
 - Metabolism: isoniazid, pyrazinamide, moxifloxacin
 - Excretion: levofloxacin, ethambutol, 2nd-line Inj
- Poorly predictable from individuals' characteristics
- A standard dosage achieves a wide range of drug exposure

- A narrow therapeutic margin forbidding the use of very high standard doses in all patients to ensure overall efficacy.
- Absence of PD markers for efficacy and/or toxicity readily assessable. (warfarin)
- Consistent PD relationships between drug exposure and efficacy and/or toxicity.

Predictability after Dosage Optimization

- Sufficient treatment duration and criticality for patient's condition to justify dosage adjustment efforts
- Acceptable PK stability, limited within-subject
 PK variability over time

抗結核藥物治療濃度監測

二線抗結核藥物血中濃度代檢實驗室

Baseline QTc of Patients in TMTC

Baseline QTc: 470ms 與500ms 間(5.4%), 大於500ms(2.9%)

106-108年疾病管制署委託科技研究計畫: MOHW106-CDC-C-114-000105 (江振源醫師)

QTc Prolongation during Treatment

- 治療滿八個月共 248 名,37 (17.6%)位QTcF 增加值大於等於60ms。
- 發生QTcF >500ms
 - Normal dose Moxifloxacin 172位 → 11.3%
 - − High dose Moxifloxacin 17 位 , 41.1%
 - Levofloxacin 48 位 → 18.7 %
 - Clofazimine 120 位 → 25.8%

106-108年疾病管制署委託科技研究計畫: MOHW106-CDC-C-114-000105 (江振源醫師)

Circadian Rhythm + Fluoroquinolones

2015 Aug

二線藥物快速分子檢測

2015 Jan

分子檢測納入常規診斷流程 快速Rifampicin抗藥分子檢測

2014 Jan

抗藥結核全面二線藥敏

2009 Sep

MDR-TB 快速分子檢測

應用全面性分子快速藥物敏感性檢測即時量身訂作的個人化的處方

結核菌長基因片斷全基因定序

以Nanopore系統,對結核菌進行長基因片所全基因定序,預測結核菌的藥物MIC。 優勢:裝置簡單,透過雲端進行資料分析,發揮Point-of-Care的潛力

Ming-Chih Yu J Biomed Sci 2021 doi: 10.1186/s12929-021-00783-x

Treatment Outcomes of MDR-TB in Taiwan Tackling Loss to Follow-up

Predictor	Total No.	Univariate		Multivariate	
		OR	(95% CI)	aOR	(95% CI)
Age, year					
<45	224	Reference		Reference	
45–64	294	0.55	(.31–.99)	0.71	(.37–1.35)
≥65	168	0.16	(.09–.28)	0.19	(.10–.35)
FQ resistance	121	0.64	(.40-1.03)	0.49	(.29–.85)
Cancer	41	0.12	(.06–.23)	0.11	(.05–.24)
Chronic kidney disease	46	0.25	(.14–.47)	0.28	(.14–.55)

Ming-Chih Yu. Clin Infect Dis. 2018 Jul 15; 67(2): 202–210.

MDR-TB的全人醫療

- 以病人為中心,滿足臨床需求。
- 主動藥物安全,及時控制毒性。
- 實證醫學出發,朝向精準醫療。

謝謝指教

