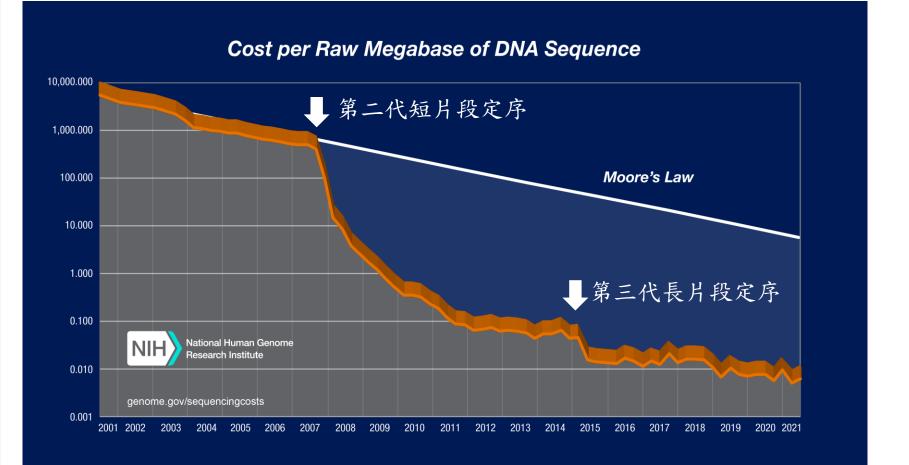


結核分枝桿菌鑑定的最新進展:長片段全基因 組定序發展

臺北醫學大學

醫學檢驗暨生物技術學系

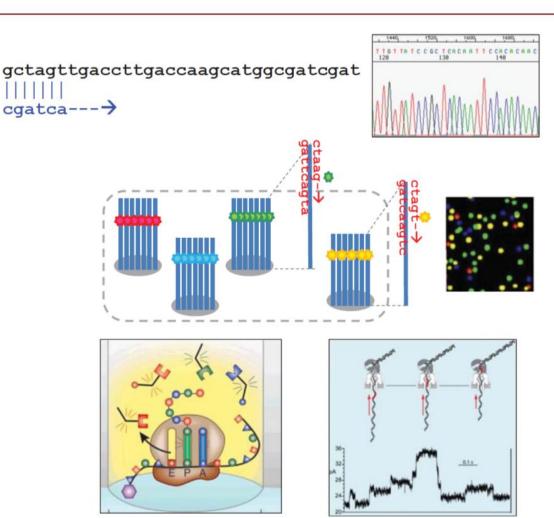

林榮俊 教授

基因定序的演進、比較、與原理

Sequencing Costs in 2021

圖片來源: <u>https://www.genome.gov/27541954/dna-sequencing-costs-data/</u>

3


基因定序的演進:

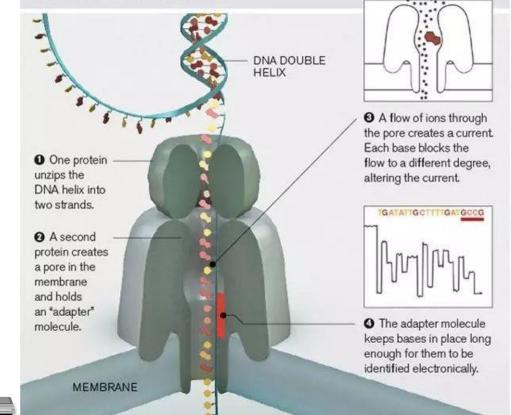
第一代定序:單分子

第二代定序:短片段叢 聚式放大/定序 (Illumina)

第三代定序:長片段長 片段即時定序 (PacBio; ONT)

基因定序平台的比較:

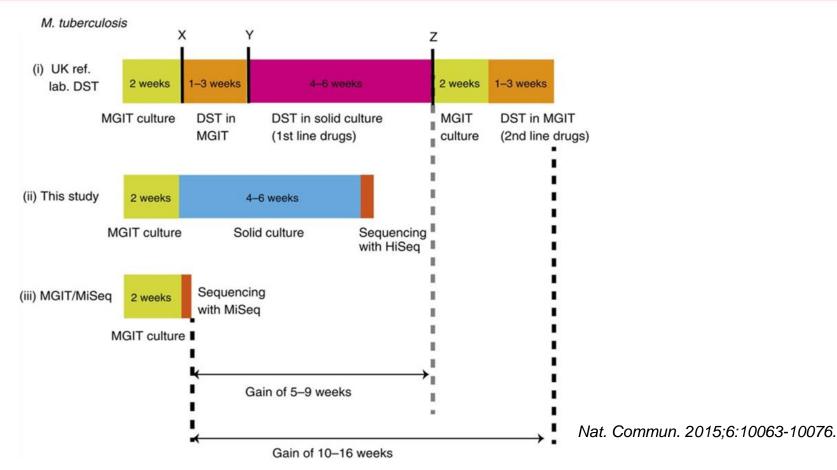
Platform Roc	ne 454 II	lumina	Life Technologies	cBio
	Sanger sequencing	Next generation sequencing (Illumina etc.)	Third generation sequencing (ONT; PacBio)	
Library preparation	Non-essential	Essential	Essential	
PCR-amplification	Essential	Essential	Non-essential	
Sequencing approach	Dideoxynucleotide termination	Reversible Dye Terminator Pyrophosphate sequencing	Real-time single molecule sequencing	


Table 1. Comparison of the output of selected sequencing platforms. Numbers are according to companies or recent publications.

Platform	Sequencer	Costs sequencing platform	Reads per run/lane	Output per run/lane	Maximal read lengths ¹	Average run duration
Sanger	ABI 3730xl	\$100,000	96	100 kbp	1000 bp	2–3 hours
454	GS FLX	\$450,000	1.000.000	700 mpb	1000 bp	24 hours
Illumina	HiSeq 3000	\$750,000	$300,000,000^{2}$ $400,000,000$ $25,000,000$	150 gbp ³	250 bp	4 days
Illumina	NextSeq500	\$250,000		120 gbp ³	150 bp	30 hours
Illumina	MiSeq	\$100,000		15 gbp ³	300 bp	24 hours
Ion Torrent	Proton II	\$224,000	330,000,000	66 gbp	200 bp	4 hours
Ion Torrent	PGM 318	\$50,000	5,000,000	2 gbp	400 bp	7 hours
PacBio	RS II	\$700,000	50,000	400 mbp	54 kbp	3 hours
Nanopore	MinION	\$1,000	$80,000^4$	490 mbp ⁴	150 kbp	n.a. ⁴

第三代定序-Nanopore sequencing

 此定序平台使用可產生固 定電流的的納米孔,
 DNA/RNA 鹼基通過納米
 孔時,根據鹼基大小對遮
 蔽納米孔的電流強度影響,
 鑑定所通過的鹼基序列。 DNA can be sequenced by threading it through a microscopic pore in a membrane. Bases are identified by the way they affect ions flowing through the pore from one side of the membrane to the other.



基因定序對於結核桿菌之鑑定與診斷

Advantage of Whole genome sequencing on MTB identification: Time-saving

Is it practicable to conduct WGS with original clinical specimen?

Prediction of Susceptibility to First-Line Tuberculosis Drugs by DNA Sequencing

The NEW ENGLAND JOURNAL of MEDICINE

OCTOBER 11, 2018

Prediction of Susceptibility to First-Line Tuberculosis Drugs by DNA Sequencing

The CRyPTIC Consortium and the 100,000 Genomes Project ABSTRACT

ESTABLISHED IN 1812

BACKGROUND

The members of the writing The World Health Organization recommends drug-susceptibility testing of Mycobacothy M. Walker, D.Phil., A. Sarah Walker Ph.D., and Tim E.A. Peto, D.Phil.) assume terium tuberculosis complex for all patients with tuberculosis to guide treatment decisions and improve outcomes. Whether DNA sequencing can be used to accurately predict profiles of susceptibility to first-line antituberculosis drugs has not been clear.

METHOD

We obtained whole-genome sequences and associated phenotypes of resistance or susceptibility to the first-line antituberculosis drugs isoniazid, rifampin, ethambutol, and pyrazinamide for isolates from 16 countries across six continents. For each isolate, mutations associated with drug resistance and drug susceptibility were identified across nine genes, and individual phenotypes were predicted unless mutations of Kingdom, or at timothy.walker@ndm.ox unknown association were also present. To identify how whole-genome sequencing .ac.uk might direct first-line drug therapy, complete susceptibility profiles were predicted. These profiles were predicted to be susceptible to all four drugs (i.e., pansusceptible) 26, 2018, at NEJM.org. if they were predicted to be susceptible to isoniazid and to the other drugs or if they contained mutations of unknown association in genes that affect susceptibility to the other drugs. We simulated the way in which the negative predictive value changed with the prevalence of drug resistance.

responsibility for the overall content and integrity of this article. The authors' full ames and academic degrees are listed 1 the Appendix. The authors' affiliations ire listed in the Supplementary Appen dix, available at NEJM.org. Address re-print requests to Dr. Timothy Walker at he Department of Microbiology, Level 7 ohn Radcliffe Hospital Her eadington, Oxford, OX3 9DU, United

VOL. 379 NO. 15

This article was published on S

This is the New England Journal of Med ine version of record, which includes all Journal editing and enhancements. The Author Final Manuscript, which is the author's version after external peer review nd before publication in the Journal, i ailable under a CC BY license a PMC6121966.

1403

N Engl I Med 2018:379:1403-15 DOI: 10.1056/NEJMoa1800474

apyright © 2018 Massachusetts Medico

RESULTS

A total of 10,209 isolates were analyzed. The largest proportion of phenotypes was predicted for rifampin (9660 [95,4%] of 10,130) and the smallest was predicted for ethambutol (8794 [89.8%] of 9794). Resistance to isoniazid, rifampin, ethambutol, and pyrazinamide was correctly predicted with 97.1%, 97.5%, 94.6%, and 91.3% sensitivity, respectively, and susceptibility to these drugs was correctly predicted with 99.0%, 98.8%, 93.6%, and 96.8% specificity. Of the 7516 isolates with complete phenotypic drug-susceptibility profiles, 5865 (78.0%) had complete genotypic predictions, among which 5250 profiles (89.5%) were correctly predicted. Among the 4037 phenotypic profiles that were predicted to be pansusceptible, 3952 (97.9%) were correctly predicted.

Genotypic predictions of the susceptibility of M. tuberculosis to first-line drugs were found to be correlated with phenotypic susceptibility to these drugs. (Funded by the Bill and Melinda Gates Foundation and others.)

N ENGL J MED 379;15 NEJM.ORG OCTOBER 11, 2018 The New England Journal of Medicine Downloaded from nejm.org at Wangfang Hospital on June 1, 2020. For personal use only. No other uses without permission

Copyright © 2018 Massachusetts Medical Society. All rights reserved

10,209 isolates

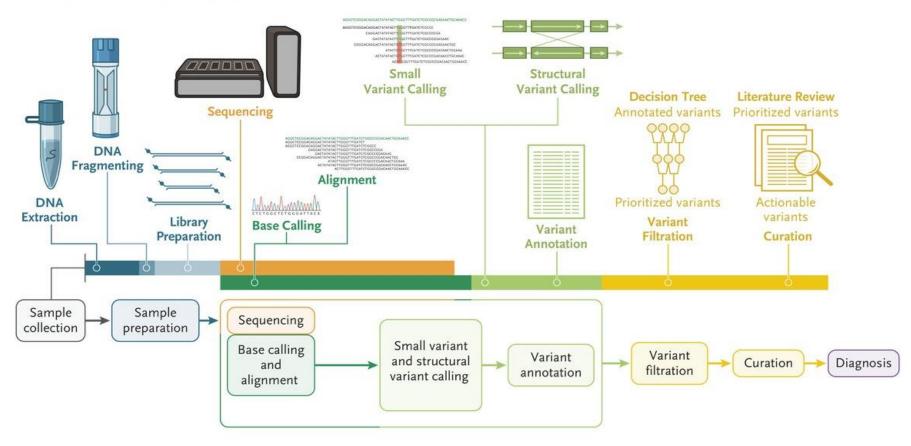
 Resistance to isoniazid, rifampin, ethambutol, and pyrazinamide

- Sensitivity: 97.1%, 97.5%, 94.6%, and 91.3%
- Specificity: 99.0%, 98.8%, 93.6%, and 96.8%

7,516 isolates (with complete phenotypic drug-

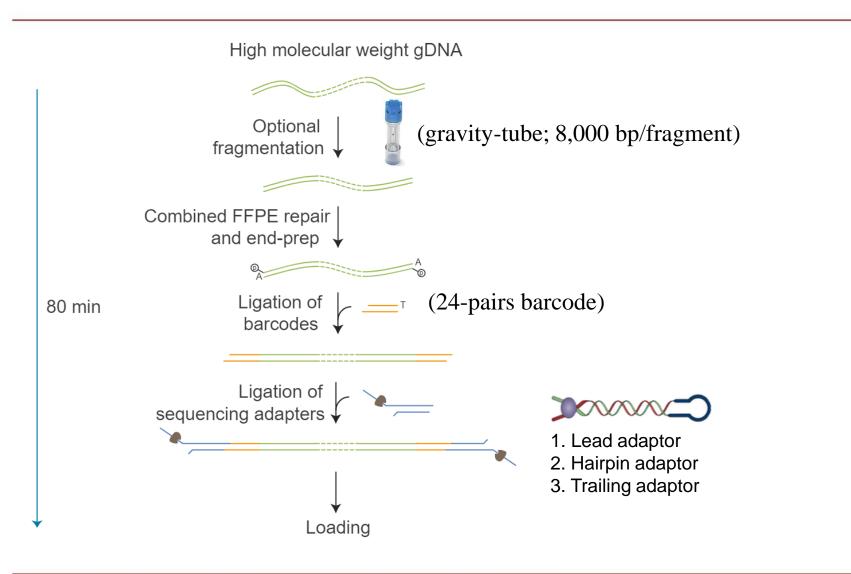
susceptibility profiles)

- 5,865 (78.0%) (with complete genotypic predictions)
 - Among which 5,250 profiles (89.5%) were correctly predicted
 - Among the 4,037 phenotypic profiles • that were predicted to be pansusceptible
 - 3,952 (97.9%) were correctly predicted



長片段定序進行全基因組定序的步驟

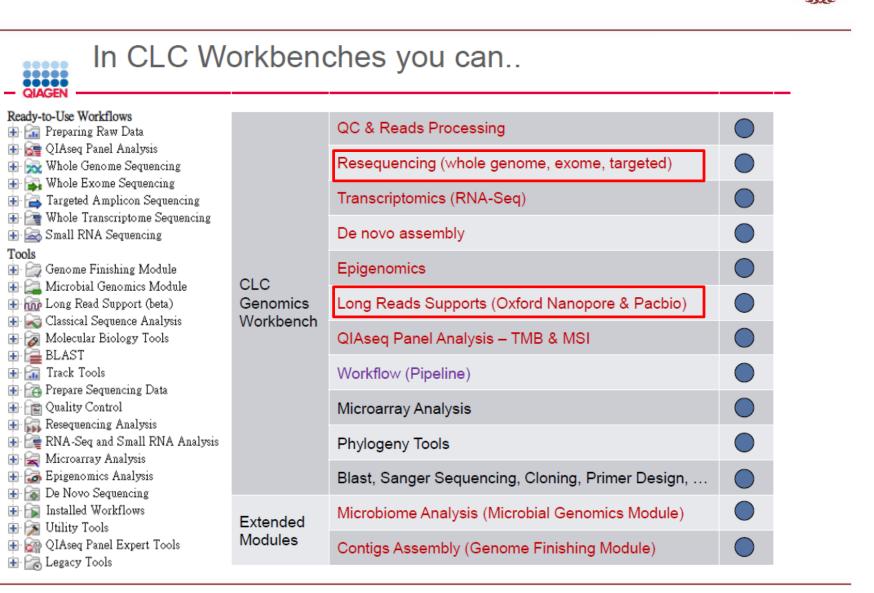
Workflow of long-read sequencing for whole genome of MTB



Ultrarapid Genome Sequencing Pipeline

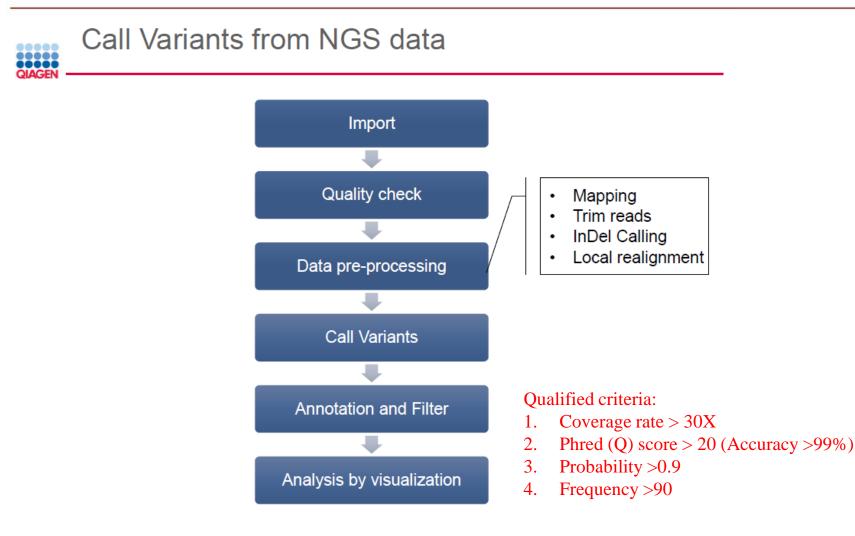
N Engl J Med. 2022;doi: 10.1056/NEJMc2112090.

Overview of library construction for ONT sequencing

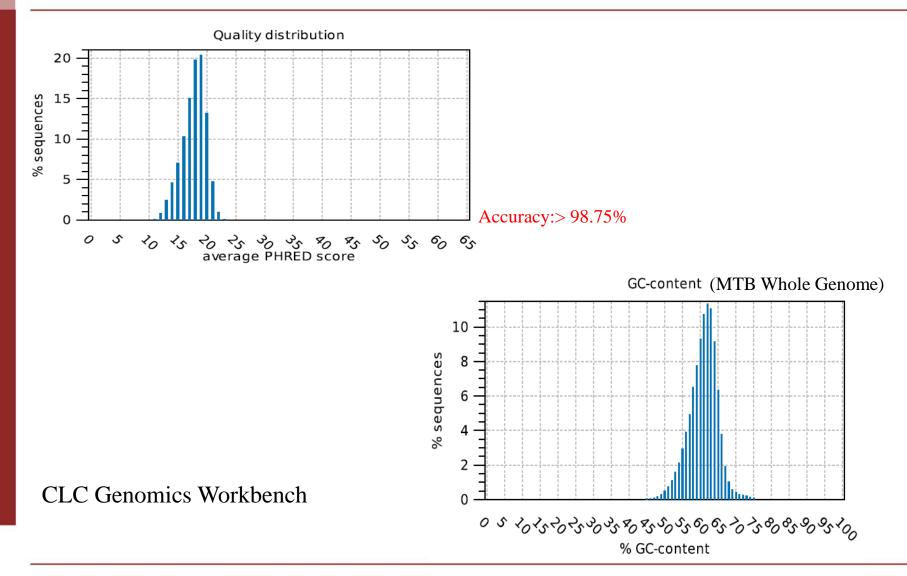

No and a state of the state of

EPI2ME Labs Notebook is applied for analysis of MTB WGS

+ 🗈 ±	EPI2ME Labs X
/ epi2me-resources / tutorials /	
Name 🔺	
Analysis_of_EPI2ME_16S_CSV_Output.ipynb	
Assembly_Tutorial.ipynb	
Basic_QC_Tutorial.ipynb	
Benchmarking_GM24385_Small_Variant_Calling.ipynb	
Benchmarking_GM24385_Structural_Variant_Calling.ipynb	
Cas9_Targeted_Sequencing_Tutorial.ipynb	
Clone_validation_tutorial.ipynb	
Curating_Adaptive_Sampling_input_files_for_MinKNOW.ipynb	
Differential_gene_expression.ipynb	
EPI2ME_Labs_Tutorial.ipynb	
ERCC_Workflow.ipynb	Welcome to EPI2ME
Human_Variant_Calling_with_Medaka.ipynb	
Metagenomic_classification_tutorial.ipynb	Laba
Modified_Base_Tutorial.ipynb	Labs
SARS_CoV_2_Analysis_Workflow.ipynb	
Structural_Variation_Tutorial.ipynb	EPI2ME Labs maintains a growing collection of notebooks on a range of topics
Viral_and_Bacterial_Variant_Calling.ipynb	En 21ME cabs maintains a growing collection of notebooks on a range of topics


- Minimap2 for reads alignment to reference sequence (H37Rv)
- medaka for variant calling and annotation.
- pomoxis for basic data QC. (Reads No, Reads length, Q-score, Frequency...)
- pysam for iterating through VCF files.
- pandas for manipulating VCF files as a table.
- bcftools for filtering VCF files on the command-line.

Non-synonymous variant within drug resistance gene of *MTB* is annotated using CLC genomics workbench


Analytic workflow regarding variant calling of *MTB* genome using CLC genomics workbench

Quality control of sequencing results: Quality score and GC content

Species identification with the reads alignment to reference sequence

QC and Barcoding [rev.	. 2020.03.10] → W	VIMP [rev. 3.4.0] → ARMA CARD [rev. 1.	1.6]		
				CSV Ashare	t Print
< 1	0% BACTERIA 1% EUKARYOTA 1% VIRUSES	reads analysed 209,854	reads classified 201,400	reads unclassified 8,454	
I∎ Taxa at Rank: Species	~)	showing taxa with reads NCBI Taxonomy Tree		HIDE FILTERS ₹	
Filter Taxon ≎	Cumulative Reads *	MINIMUM ABUNDANCE CUTOFF 3% 1% 0.5% 0.1% 0%	(SHOW TOP N TAXA 10 20 30 100 200	
Mycobacterium tuberculosis	112,383			④ EXPORT PNG □ ENABLE ZOOM	
Escherichia coli	1,910				
Mycobacterium canettii	1,823				
Mycobacterium bovis	797				
Mycobacterium africanum	326				
Homo sapiens	149				
Mycobacterium avium	44				
Mycobacterium kansasii	20				
Mycobacterium haemophilum	19				
Mycobacterium colombiense	11				
Mycobacterium shigaense	9	root	Mycoba	acterium tuberculosis	
Mycobacterium marseillense	8				

Preliminary results of long-read sequencing toward variant calling within MTB genome

Rows: 819 / 82	23,278 T	able view: Genom	е		Filter to Selection		O Match any	🔘 🖲 Match all	A	Table Settings Reverse read count
	gene (Mycobac	terium tuberculos	is H37Rv_Gene)	▼ contains	- rpoB	•	Filter		Reverse read count Forward read coverage
Chromosome	Region	Туре	Reference	Allele	Average q A	mino acid change	Non-synon	gene (Myc	_	Reverse read coverage
NC 000962.3	761069^761070	Insertion	Hererenee	Function	12.11	initio della eriarige	No	rpoB		Forward/reverse balance
IC 000962.3	761073^761074	Insertion	-	A		5181.1:p.Phe424fs	Yes	rpoB		
1000962.3	761073 761074	Insertion		~	12.27	5101.1.p.r/1642415	No	rpoB		Average quality
IC 000962.3	761095^761096	Insertion	-	G		5181.1:p.Ser431fs	Yes			Read count
IC 000962.3	761095 761096	Insertion	-	0	8.38	5161.1:p.58145115	No	rpoB		
IC 000962.3	761095 761096	SNV	A	G		5101 1 m Cord 21 Chr	Yes			Read coverage
	761097	SNV	A	A	13.67	5181.1:p.Ser431Gly	No	rpoB		# unique start positions
C_000962.3	761104^761105		A .	C		5101.1.p.Mot424fe	Yes	rpoB		# unique end positions
C_000962.3		Insertion				5181.1:p.Met434fs	No	rpoB	1 31	= # unique end positions
IC_000962.3	761104^761105	Insertion	- G	- Т	14.06			rpoB		BaseQRankSum
IC_000962.3	761132	SNV	G	G	17.50		No	rpoB		Read position test probability
IC_000962.3	761132	SNV			20.82		No	rpoB		
IC_000962.3	761139	SNV	C	Т		5181.1:p.His445Tyr	Yes	rpoB		Read direction test probability
IC_000962.3	761139761140	Deletion	CA			5181.1:p.His445fs	Yes	rpoB	1 1	Homopolymer length
IC_000962.3	761139761140	MNV	CA	CA	8.88		No	rpoB		
IC_000962.3	761141^761142	Insertion	•	A		5181.1:p.Arg447fs	Yes	rpoB		- Homopolymer
IC_000962.3	761141^761142	Insertion	-	-	9.06		No	rpoB	1	QUAL
C_000962.3	761152^761153	Insertion	-	G		5181.1:p.Ser450fs	Yes	rpoB		
IC_000962.3	761152^761153	Insertion	-	-	13.14		No	rpoB		Coding region change
IC_000962.3	761162	SNV	G	С	12.00		No	rpoB		🖌 Amino acid change
IC_000962.3	761162	Deletion	G	-	9.89 NP_215	5181.1:p.Gly455fs	Yes	rpoB		
IC_000962.3	761162	SNV	G	G	13.87		No	rpoB		Amino acid change in longest trans
IC_000962.3	761166	Deletion	C	-	13.00 NP_215	5181.1:p.Gly455fs	Yes	rpoB	100	Coding region change in longest tra
IC_000962.3	761166	SNV	C	C	16.77		No	rpoB		
IC_000962.3	761168	SNV	C	Т	4.61		No	rpoB		Other variants within codon
IC_000962.3	761168761170	MNV	CGG	TAA	11.55 NP_215	5181.1:p.Gly455Asn	Yes	rpoB	10	Non-synonymous
IC_000962.3	761168761170	MNV	CGG	CGG	14.41		No	rpoB	131	
IC_000962.3	761169	SNV	G	A	8.17 NP_215	5181.1:p.Gly455Ser	Yes	rpoB		Start by 3' rule
IC_000962.3	761169761170	MNV	GG	AA	3.78 NP_215	5181.1:p.Gly455Asn	Yes	rpoB		Symbols by 3' rule
IC 000962.3	761170	SNV	G	A	7.74 NP 215	5181.1:p.Gly455Asp	Yes	rpoB		
C 000962.3	761180	Deletion	A	-		5181.1:p.Arg459fs	Yes	rpoB		Mycobacterium tuberculosis H37Rv
IC 000962.3	761180	SNV	A	A	19.09		No	rpoB		🗌 type (Mycobacterium tuberculosis H
IC 000962.3	761191	Deletion	C	-		5181.1:p.Leu464fs	Yes	rpoB		
IC 000962.3	761191	SNV	C	C	20.93		No	rpoB		source (Mycobacterium tuberculosis
IC 000962.3	761194	SNV	G	T		5181.1:p.Gly463Val	Yes	rpoB		🔲 ID (Mycobacterium tuberculosis H37
IC 000962.3	761194	SNV	G	G	17.38		No	rpoB		ovnoriment (Mycobactorium tubacc
IC 000962.3	761196	SNV	c	т	9.33		No	rpoB		experiment (Mycobacterium tubercu
IC 000962.3	761196	SNV	C	C	20.25		No	rpoB	181	gbkey (Mycobacterium tuberculosis
IC 000962.3	761198	Deletion	G	-		5181.1:p.Glu465fs	Yes	rpoB	i ir	gene (Mycobacterium tuberculosis)
C 000962.3	761198	SNV	G	G	21.55		No	rpoB		
C 000962.3	761199^761200	Insertion	-	A		5181.1:p.Val466fs	Yes	rpoB		gene_biotype (Mycobacterium tube
C 000962.3	761199^761200	Insertion	2		16.06		No	rpoB	100	locus tag (Mycobacterium tubercul
IC 000962.3	761204	Deletion	C			5181.1:p.Arg467fs	Yes	rpoB	3	
IC 000962.3	761204	SNV	c	C	26.50	101.11.h.m.940.12	No	rpoB		gene_synonym (Mycobacterium tub
IC 000962.3	761204	Deletion	GT			5181.1:p.Val469fs	Yes	rpoB	1	GenelD
IC 000962.3	761211761212	MNV	GT	GT	16.80	3101.1:p.val40315	No	rpoB	8.	
-	761211.761212		61	A		5191 1 m Vol460fe	Yes			GeneID (Mycobacterium tuberculos
IC_000962.3	761211 761212	Insertion	0	T		5181.1:p.Val469fs 5181.1:p.Pro479Leu	Yes	rpoB	-	Select All

Qualified criteria: 1. Coverage rate > 30X2. Phred (Q) score > 20(Accuracy >99%) 3. Probability > 0.9

Discriminative efficacy of variant calling by using short-read and long-read sequencing

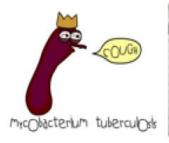
Illumina; MiSeq platform

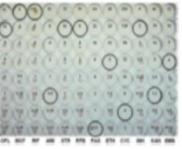
Туре	Reference	Allele	Coverage	Probability	Amino acid change	gene (Myc
SNV	С	A	145	1.00	NP 216424.1:p.Arg463Leu	katG

ONT; MinION platform

Туре	Reference	Allele	Coverage	Probability	Amino acid change	gene (Myc
SNV	Т	A	38	0.64	NP_216424.1:p.Tyr678Phe	katG
SNV	С	G	34	0.91	NP_216424.1:p.Gly599Arg	katG
SNV	G	Т	38	0.94	NP_216424.1:p.Thr579Asn	katG
SNV	G	С	35	0.99	NP_216424.1:p.Ala551Gly	katG
SNV	C	A	39	1.00	NP_216424.1:p.Arg463Leu	katG
SNV	G	Т	37	0.70	NP_216424.1:p.Asp448Glu	katG
SNV	Т	С	37	0.70	NP_216424.1:p.Gln439Arg	katG
SNV	G	A	32	0.77	NP 216424.1:p.Pro388Leu	katG
SNV	Т	G	24	0.98	NP_216424.1:p.Lys310Thr	katG
SNV	Т	С	21	1.00	NP 216424.1:p.Glu287Gly	katG

驗證長片段定序結果與結核桿菌抗藥性特性:


最小抑菌濃度試驗 Minimal inhibitory concentration (MIC) assay


MTBC MIC Panel

Sensititre - MTBC MIC Panel

- First dry microbroth dilution plate
- Test First and Second line drugs on a single plate
 - 12 antimicrobics
- MIC results in 10-21 days

МҮСОТВІ										
Antimicrobial Agent	Dilution Range (µg/mL)									
Ethambutol	0.5-32									
Isoniazid	0.03-4									
Rifampin	0.12-16									
Streptomycin	0.25-32									
Moxifloxacin	0.06-8									
Amikacin	0.12-16									
Kanamycin	0.6-40									
Cycloserine	2-256									
Ethionamide	0.3-40									
Ofloxacin	0.25-32									
Para-aminosalicylic acid	0.5-64									
Rifabutin	0.12-16									

MTBC MIC Worksheet

SENSITITRE [®] MYCOTB	英美醫療器材有限公司 服務電話0809091689			
Date:	Patient Name:	Lot#:		
Isolate #:	Technician:	Signature:		

A OF	MXF			5	6	7	8	9	10	11	12	,	Antimicrobics
		RIF	AMI	STR	RFB	PAS	ETH	СУС	INH	KAN	EMB	OFL	Ofloxacin
32	8	16	16	32	16	64	40	256	4	40	32	MXF	Moxifloxacin
B OF	L MXF	RIF	AMI	STR	RFB	PAS	ETH	СҮС	INH	KAN	EMB	RIF	Rifampin
16	4	8	8	16	8	32	20	128	2	20	16	AMI	Amikacin
C OF	MXF	RIF	AMI	STR	RFB	PAS	ETH	СҮС	INH	KAN	EMB	AIVII	Amikacin
8	2	4	4	8	4	16	10	64	1	10	8	STR	Streptomycin
D OF	L MXF	RIF	AMI	STR	RFB	PAS	ETH	СҮС	INH	KAN	EMB	RFB	Rifabutin
4	1	2	2	4	2	8	5	32	0.5	5	4	PAS	Para-aminosalicylic
E OF	L MXF	RIF	AMI	STR	RFB	PAS	ETH	CYC	INH	KAN	EMB		acid
2	0.5	1	1	2	1	4	2.5	16	0.25	2.5	2	ETH	Ethionamide
F OF	L MXF	RIF	AMI	STR	RFB	PAS	ETH	CYC	INH	KAN	EMB	сүс	Cycloserine
1	0.25	0.5	0.5	1	0.5	2	1.2	8	0.12	1.2	1	INH	Isoniazid
G OF	L MXF	RIF	AMI	STR	RFB	PAS	ETH	CYC	INH	KAN	EMB	KAN	Kanamycin
0.5	0.12	0.25	0.25	0.5	0.25	1	0.6	4	0.06	0.6	0.5		
H OF	MXF	RIF	AMI	STR	RFB	PAS	ETH	сүс	INH	POS	POS	POS	Positive Control
0.2	5 0.06	0.12	0.12	0.25	0.12	0.5	0.3	2	0.03			EMB	Ethambutol

長片段定序應用於鑑別結核桿菌抗藥性基因 變異位點

Integrative utility of long read sequencingbased whole genome analysis and phenotypic assay on differentiating isoniazid-resistant signature of Mycobacterium tuberculosis

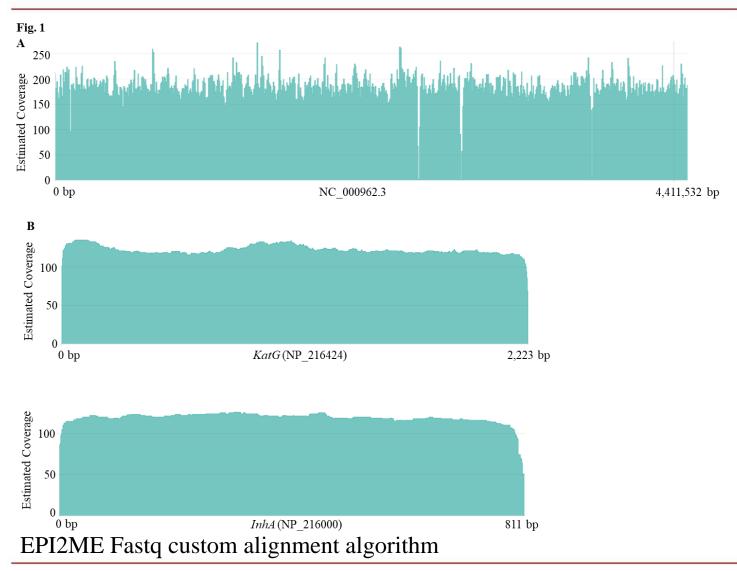
J Biomed Sci. 2021 Dec 18;28(1):86. Ming-Chih Yu, Ching-Sheng Hung, Chun-Kai Huang, Cheng-Hui Wang, Yu-Chih, Liang, Jung-Chun Lin

Drug susceptibility test of recruited isolates

No.	INH 0.2	INH 1.0	RIF 1.0	EM 5.0	EM 10.0	S 2.0	S 10.0	No.	INH 0.2	INH 1.0	RIF 1.0	EM 5.0	EM 10.0	S 2.0	S 10.0 (µg/mL)
1	R	S	S	S	S	S	S	21	R	R	S	S	S	S	S
1								22	R	R	R	R	S	R	S
2	R	S	S	S	S	S	S	23	R	R	S	S	S	R	s
3	R	S	S	R	S	S	S	23 24	R	R	S	S	S	R	R
4	R	S	R	R	S	R	R	24 25	R	R	S	S	S	R	R
5	R	S	R	R	S	S	S	25	R	R	R	R	S	R	
6	R	S	S	R	S	S	S	20 27							R
7	R	S	S	S	S	S	S		R	R	S	S	S	R	R
8	R	S	S	S	S	S	S	28	R	R	S	S	S	S	S
9	R	S	S	S	S	S	S	29	R	R	R	S	S	S	S
10	R	S	S	S	S	R	R	30	R	R	S	R	S	S	S
11	R	S	R	S	S	S	S	31	R	R	S	S	S	S	S
11	R	S	S	S	S	S		32	R	R	S	S	S	S	S
							S	33	R	R	R	R	S	R	R
13	R	S	R	S	S	S	S	34	R	R	S	S	S	R	S
14	R	S	S	S	S	S	S	35	R	R	S	S	S	R	S
15	R	S	R	S	S	R	R	36	R	R	S	S	S	R	S
16	R	S	R	R	S	S	S	37	R	R	S	S	S	S	S
17	R	S	R	S	S	S	S	38	R	R	S	R	S	S	S
18	R	S	S	S	S	S	S	39	R	R	S	S	S	R	S
19	R	S	S	S	S	S	S	40	R	R	S	S	S	R	R
20	R	S	S	S	S	S	S	41	R	R	S	R	S	S	S
		~	~	~	~	~	~	42	R	R	R	R	S	R	S

Low INH-resistance MTB

High INH-resistance MTB

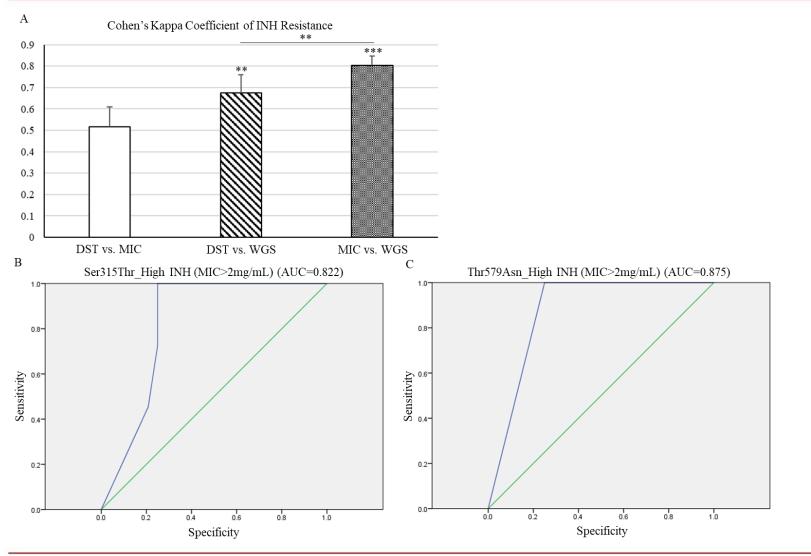

Summary statistics of sequencing results with the HMW gDNA prepared from the clinical isolates

Group	Susceptible isolates (n=10)	Low Isoniazid- resistance (n=20)	High Isoniazid- resistance (n=22)	<i>p</i> value
Number of Raw reads (Mean; (SD))	382,196 (±17,321)	333,823 (±15,702)	356,660 (±14,407)	>0.1
Number of aligned reads (Mean; (SD))	366,547 (±10,121)	322,075 (±8,332)	339,176 (±11,540)	>0.1
Correctly classified (% (SD))	95.91 (5.64)	96.48 (5.97)	95.09 (5.26)	>0.1

No statistical difference in read number is noted among any of the groups.

The coverage rate of sequenced reads to the whole MTB genome or individual gene

Emerging variants within *katG* gene are characterized using long-read sequencing

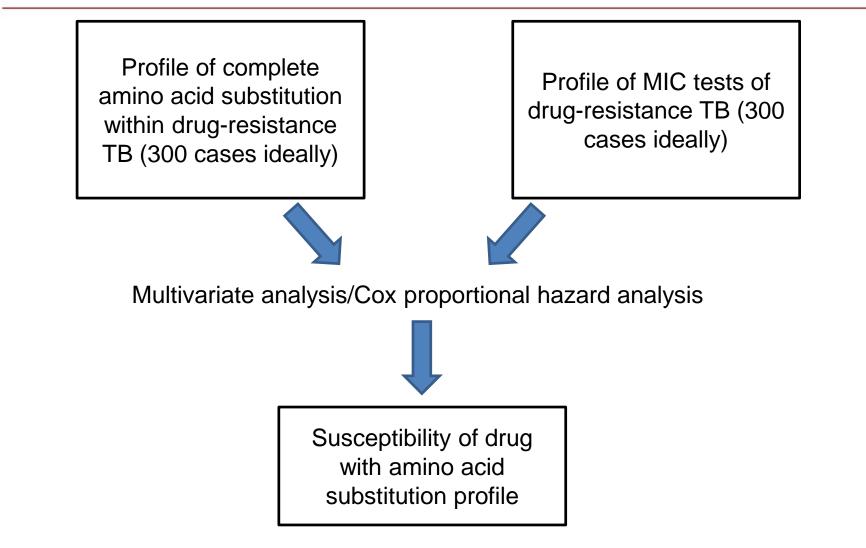


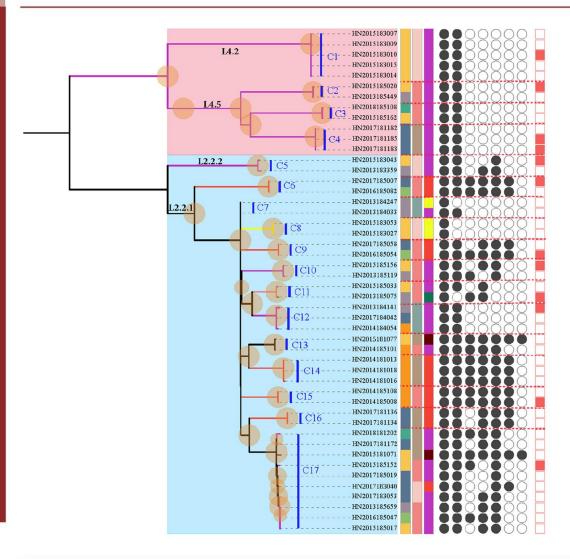
	Variants in <i>katG</i>	Isolate No.	Variant No.
Susceptible only	Leu101Arg/Ile462Asn/Ala478Val/Pro566Thr/Leu631Pro	10	5
Susceptible and Resistant	Gln50Lys/Asn51Thr/Glu81Gln/Met84Thr/Pro92Ala/ <u>Gly123Arg</u> /Lys158Asn/ <u>Tyr304Asp</u> /Gly307Glu / <u>Asp311Asn</u> /Pro325Arg/Lys327Asn/Lys356Met/Tyr390Asp/Glu399Lys/Pro443His/ <u>Arg463Leu</u> /Leu546Pro/Thr564Pro/Leu611Pro/Val659Leu	52	21
	Variants (Identified copy) in <i>katG</i>	Isolate No.	Variant No.
Low INH resistant isolate	Gly14Arg(2)/ Gly124Ala(2)/ Leu141Phe(2)/ Leu141Met(2)/ Val68Ala(2)/ Pro235Gln(2) Ser374Phe(2)/ Asp509Gly(3)/ Gly570Ala(2)/ Gly665Val(2)/ Leu704Val(2)/ Phe737Leu(2)	20	12
High INH resistant isolate	$ \begin{array}{l} \underline{\mathrm{Tyr95Phe}(2)}/ \ \mathrm{Pro136Ala}(2)/ \ \mathrm{Ser160Ala}(2)/ \ \mathrm{Val188Leu}(5)/ \ \mathrm{Glu287Asp}(2)/ \ \underline{\mathrm{Ser315Thr}(13)}/ \ \underline{\mathrm{Ser315Gly}(1)}/ \\ \underline{\mathrm{Ser315Asn}(1)}/ \ \mathrm{Thr354Ile}(2)/ \ \mathrm{Ser376Met}(3)/ \ \mathrm{Gly560Val}(2)/ \ \mathrm{Thr579Asn}(2)/\mathrm{Lys600Glu}/\mathrm{Arg}(2)/ \\ \underline{\mathrm{Asn602Lys}/\mathrm{Asp}(3)}/ \ \mathrm{Met664Leu}/\mathrm{Ile}(2) \end{array} $		15
Low and High INH resistant isolate	resistant Pro235Leu(5)/ Glu289Gly(2)/ Glu318Gln(3)/ Glu334Gln(2)/ Pro375Arg(4)/ <u>Ser383Ala(2)</u> / Trp412Cys(3)		28

Emerging variants within *katG* gene is relevant to high -INH resistance of MTB isolates

Genotyping No.	High confidence variant	Novel variant	MIC of INH (µg/mL)	DST of INH (µg/mL)	Frequency (%)
1	Ser315Thr	N/A	2	1	25% (5/20)
2	Ser315Thr	Thr376Met Pro136Ala	2	1	10% (2/20)
3	Ser315Thr	Val188Leu Ser160Ala	2	1	15% (3/20)
4	Ser315Thr	Val188Leu Thr579Asn	4	1	10% (2/20)
5	Ser315Thr	Thr579Asn	>4	1	5% (1/20)
6	Ser315Thr	Lys600Glu	>4	1	10% (2/20)
7	N/A	Glu287Asp Lys310Thr Thr579Asn	>4	1	10% (2/20)
8	N/A	Glu318Gln Ile552Arg Gly599Arg	0.5	>0.2	5% (1/20)
9	N/A	Glu287Asp Thr376Met Lys600Arg Ser315Asn	0.03	>0.2	5% (1/20)
10	N/A	Met664Ile Ser315Gly	0.06	>0.2	5% (1/20)

Integrative utility of long read and phenotypic assay on differentiating drug-resistant signature of MTB




Application of WGS toward precise diagnosis of MTB

Application of deep machine learning on TB diagnosis

Correlation of phenotypic drug-resistant signatures with *MTB* classified with SNP profile using WGS.

Microbiol. Spectr. 2022;10: e0154321

Acknowledgement

臺北市立萬芳醫院 余明治 執行長 (MTB WGS) 實驗室成員: 博士班四年級 洪經勝 (臺北市立萬芳醫院 檢驗科主任) 碩士班二年級 黃俊凱 (臺北市立萬芳醫院檢驗科 醫檢師)